Stable low-recombination n-Si/TiO2 hole-blocking interface and its effect on silicon heterojunction photovoltaics

Abstract

TiO2 deposited on (100) crystalline silicon at near room temperature results in a hole-blocking, electron-transparent heterojunction. In this paper, we show that this interface can have a minority carrier recombination velocity on the order of 100 cm/s, which is stable for over 5 months in air. Second, we model the effect of such interfaces to replace the diffused n+/n (back surface field) layer at the cathode of p+/n and double heterojunction crystalline silicon solar cells. Simulations show that using TiO2/n-Si with the measured values of interface recombination velocity as a replacement for the n+/n diffusion at the cathode contact would yield power conversion efficiencies greater than 23%.

Publication
Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th
Date