

Course-type Credits

S.No.	Course-type	Credits
1	Core	23
2	Elective	9
	Total	32

Color code for Minors:

Red: Electronics

Blue: Photonics

Orange: Systems and packaging

Green: Nanoscience in biology & statistics

Grey: Materials & Equipment (In collaboration with Material Engineering Dept

IISc)

Purple: Quantum Technology (in collaboration with IISc Quantum initiative)

Core Courses

Course code	Course name	Core/	Instructor (primary)	<u>Credits</u>
<u>couc</u>		<u>Elective</u>	(primary)	
NE201A	Structural and functional characterization:	Core	Akshay	3:0
	Theory		Naik	
NE 203	Micro & Nano Fabrication technology &	Core	Shankar/	3:1
	process : Theory		Sushobhan	
NE 206	Semiconductor Device Physics: Basics	Core	Sushobhan	3:1
	Devices			
NE 250	Entrepreneurship: Ethics & Social Impact	Core	Navakanta	1:0
			Bhat	
NE201B	Structural and functional characterization:	Core	Akshay	0:2
	Lab		Naik	
NE 202	Micro & Nano fabrication technology &	Core	Shankar/	0:2
	process : Lab		Sushobhan	
NE 241	Material Synthesis:	Core	Pavan	3:1
	quantum dots to bulk crystals		Nukala	
NE 200	Technical Writing/Presentation	Core	Sreetosh	3:0
	Total			23:0

Elective Courses

Code	Course name	Semester	Instructor (s)	Credits
NE 215	Device Physics: Applied Solid State Physics	Aug	Akshay Naik	3:0
NE 223	Analog circuits & Embedded systems for sensors	Jan	Saurabh	2:1
NE 314	Device Physics: Opto-electronics and Photovoltaics	Jan	Aditya	3:0
NE 315	Device Physics: RF/Microwave Electronics	Jan	Digbijoy/ Murali	3:0
NE 317	Device Physics: From Natural to Artificial Intelligence	Aug	Sreetosh	3:0
MT 261	Organic Electronics	Aug	Praveen Ramamurthy	3:0
NE 240	Materials: Design principles for electronic, electromechanical & optical functions	Aug	Pavan Nukala	3:0
NE XXX	Mechanical Design & Vacuum Technology	Jan	Dhavala Suri	3:0
MT 202	Thermodynamics and kinetics	Aug	Sai Gautam	3:0
MT 209	Defects in materials	Aug	Karthieyan	3:0
MT 211	Magnetism, magnetic materials and devices	Aug	Bhagwati Prasad	3:0
MT 240	Principles of electrochemistry and corrosion	Aug	Sai Gautam	3:0
MT 241	Structure and characterization of materials	Jan	Rajeev Ranjan	3:0
NE 2XX	Microsystem Design and Technology	Jan	Gayathri	3:0
NE 221	Advanced Packaging	Jan	Prosenjit/MM Nayak	3:0
NE 222	MEMS: Modelling, Design, and Implementation	Aug	Saurabh/Gayathri	3:0
NE 331	MEMS: Microfluidics	Aug	Prosenjit Sen	3:0
NE 281	Statistical and probabilistic data analysis techniques	Aug	Manoj Varma	3:0
NE 3XX	Bio: Nanotechnology in medicine	Aug	Vini Gautam	3:0
NE 332	Bio: Physics and mathematics of molecular sensing	Jan	Manoj Varma	3:0
NE 213	Photonics: Introduction	Aug	Shankar/Ambaris h	3:0
NE 310	Photonics: Materials & Devices	Jan	Shankar	3:0
NE 312	Photonics: Nonlinear Photonics and Lasers	Aug	Supradeepa	3:0
NE 313	Photonics: Principles and Systems for Lasers	Jan	Supradeepa	3:0
QT 202	Introduction to Quantum Measurement and Sensing	Aug	Baladitya Suri	3:0
QT 204	Introduction to Materials for Quantum Technologies	Aug	Chandni U.	3:0
QT 207	Introduction to quantum computation	Jan	Apoorva Patel	3:0
QT 209	Introduction to Quantum Communications and Cryptography	Jan	Apoorva Patel	3:0
QT 211	Basic Quantum Technology Laboratory	Jan	Baladitya/Vibhor	1:2

Details of course content:

NE NE	Technical Writing and	This course is designed to help students learn to write
200	<u>Presentation</u>	their manuscripts, technical reports, and dissertations
		in a competent manner. The do's and don'ts of the
		English language will be dealt with as a part of the
		course. Assignments will include writing on topics to a
		student's research interest, so that the course may
		benefit each student directly.
NE 202	Micro and Nano	This course is designed to give training in device
	<u>Fabrication</u>	processing at the cleanroom facility. Four specific
		modules will be covered to realize four different
		devices i) p-n junction diode, ii) MOS capacitor iii)
		MEMS Cantilever iv) Microfluidic channel.

	1	
NE 221	Advanced MEMS Packaging	This course intends to prepare students to pursue advanced
		topics in more specialized areas of MEMS and Electronic
		packaging for various real-time applications such as Aero space,
		Bio-medical, Automotive, commercial, RF and micro fluidics etc.
		MEMS - An Overview, Miniaturisation, MEMS and
		Microelectronics -3 levels of Packaging. Critical Issues viz.,
		Interface, Testing & evaluation. Packaging Technologies like
		Wafer dicing, Bonding and Sealing. Design aspects and Process
		Flow, Materials for Packaging, Top down System Approach.
		Different types of Sealing Technologies like brazing, Electron
		Beam welding and Laser welding. Vacuum Packaging with
		Moisture Control. 3D Packaging examples. Bio Chips / Lab-on-a
		1
		chip and micro fluidics, Various RF Packaging, Optical Packaging,
		Packaging for Aerospace applications. Advanced and Special
		Packaging techniques – Monolithic, Hybrid etc., Transduction and
		Special packaging requirements for Absolute, Gauge and
		differential Pressure measurements, Temperature
		measurements, Accelerometer and Gyro packaging techniques,
		Environmental Protection and safety aspects in MEMS
		Packaging. Reliability Analysis and FMECA. Media Compatibility
		Case Studies, Challenges/Opportunities/Research frontier.
NE 235	Microsystem Design and	This introductory course covers the fundamentals and analysis of
	Technology	MEMS transducer design and system development. This course
		builds on the background provided in "NE222 MEMS: Modelling,
		Design, and Implementation". This course exposes the students
		to material physics, elastic waves and propagation, transducer
		modelling, MEMS sensors and actuator design, and RF MEMS
		component analysis. The course will also have basic lab sessions
		where microsystems such as ultrasonic transducers, mass
		sensors, Surface Acoustic Wave resonators, inertial sensors, etc.
		will be demonstrated. Finite element modelling, layout design and
		device testing scheme of different MEMS transducers will be
		covered. The course will be evaluated using quizzes,
		assignments, and a project.
NE 310	Photonics technology:	Optics fundamentals; ray optics, electromagnetic optics and
	Materials and Devices	guided wave optics, Light-matter interaction, optical materials;
		phases, bands and bonds, waveguides, wavelength selective
		filters, electrons and photons in semiconductors, photons in
		dielectric, Light-emitting diodes, optical amplifiers and Lasers,
		non-linear optics, Modulators, Film growth and deposition,
		defects and strain, III-V semiconductor device technology and
		processing, silicon photonics technology, photonic integrated
		circuit in telecommunication and sensors
	!	

NE 313	Lasers: Principles and	This is an intermediate level optics course which builds on the
INE STS	Systems and	background provided in "Introduction to photonics" offered in our
	<u>Systems</u>	department. Owing to the extensive use of lasers in various fields,
		we believe a good understanding of these principles is essential
NE 000		for students in all science and engineering disciplines
NE 332	Physics and Mathematics of	This course presents a systematic view of the process of sensing
	Molecular Sensing	molecules with emphasis on bio-sensing using solid state
		sensors. Molecules that need to be sensed, relevant molecular
		biology, current technologies for molecular sensing, modeling
		adsorption-desorption processes, transport of target molecules,
		noise in molecular recognition, proof-reading schemes, multi-
		channel sensing, comparison between in-vivo sensing circuits and
		solid state biosensors.
NE 203		Introduction and overview of micro and nano fabrication
		technology. Safety and contamination issues in a cleanroom.
	and process	Overview of cleanroom hazards. Basic process flow structuring.
		Wafer type selection and cleaning methods. Additive fabrication
		processes. Material deposition methods. Overview of physical
		vapour deposition methods (thermal, e-beam, molecular beam
		evaporation) and chemical vapour deposition methods (PE-CVD,
		MOCVD, CBE, ALD). Pulsed laser deposition (PLD), pulsed
		electron deposition (PED). Doping: diffusion and ion implant
		techniques. Optical lithography fundamentals, contact lithography,
		stepper/canner lithography, holographic lithography, direct-laser
		writing. Lithography enhancement methods and lithography
		modelling. Non-optical lithography; E-beam lithography, ion beam
		patterning, bottom-up patterning techniques. Etching process: dry
		and wet. Wet etch fundamentals, isotropic, directional and
		anisotropic processes. Dry etching process fundamentals, plasma
		assisted etch process, Deep Reactive Ion Etching (DRIE), Through
		Silicon Vias (TSV). Isotropic release etch. Chemical-mechanical
		polishing (CMP), lapping and polishing. Packaging and assembly,
		protective encapsulating materials and their deposition. Wafer
		dicing, scribing and cleaving. Mechanical scribing and laser
		scribing, Wafer bonding, die-bonding. Wire bonding, die-bonding.
		Chip-mounting techniques.
	I .	1

NE 206 Semiconductor Physics: Basic Devices

Device Free electron model, Energy bands in solids, Reciprocal space, Direct & indirect band gap, Brillouin Zone (BZ), Fermi-Dirac distribution, Intrinsic & extrinsic semiconductors, Doping, Impurity levels & dopant population, Density of states, Effective density of states. Equilibrium electron-hole concentration, Temperaturedependence of carrier concentration, degenerate/highly doped semiconductor.

Low-field transport: Scattering mechanisms & mobility.

High-field transport: velocity-field relation, velocity saturation. Diffusion and Drift. Metal-semiconductor (Schottky and Ohmic) junctions, Schottky diode under bias, Fermi pinning & surface states, image force lowering. Excess carriers and recombination-Shockley-Read-Hall recombination, generation. Charge injection & Quasi-Fermi levels, current continuity equation & ambipolar transport, Haynes-Shockley experiment,. PN junction at thermal equilibrium. PN junction under forward bias, derivation of currentvoltage relation. PN junction under reverse bias, generation & recombination currents.

High level injection in PN diode, junction capacitance and C-V profiling. Zener & avalanche breakdown, impact ionization, punchthrough effect. Transient behavior of p-n junction

Transient behavior of p-n junction (contd.), diffusion capacitance, reverse recovery

PN diode as solar cell and photodetector, Continuity equation under illumination. Current transport mechanisms: tunneling, thermionic field emission, space-charge or Mott-Gurney law, Poole-Frenkel, Hopping transport. Introduction to compound semiconductors, alloys, epitaxy, band engineering

BJT: basic working principle, DC parameters, gain, current components. BJT: common emitter, common base operation, breakdown voltages MOS capacitor: charge, field, energy bands; concept of inversion, C-V (high F and low F), deep depletion. Real MOS cap: flat-band, threshold voltage, Si/SiO2 system and interface/oxide traps. MOSFET: structure and operating principle, pinch-off and saturation. MOSFET: derivation of I-V, Gradual Channel Approximation. MOSFET: sub-threshold current & SS slope; device scaling and Moore's law. MOSFET: short channel effects (charge sharing, velocity overshoot, channel length modulation, DIBL, oxide reliability)

NE 213	Introduction to Photonics	This is a foundation level optics course which intends to prepare
		students to pursue advanced topics in more specialized areas of
		optics such as biophotonics, nanophotonics, non-linear optics
		etc. Classical and quantum descriptions of light, diffraction,
		interference, polarization. Fourier optics, holography, imaging,
		anisotropic materials, optical modulation, waveguides and fiber
		optics, coherence and lasers, plasmonics.
NE 215	Applied Solid State Physics	This course is intended to build a basic understanding of solid
112210	Applied Solid State 1 Hysios	state science, on which much of modern device technology is
		built, and therefore includes elementary quantum mechanics.
		Review of Quantum Mechanics and solid state physics, Solution
		of Schrodinger equation for band structure, crystal potentials
		leading to crystal structure, reciprocal lattice, structure-property
		correlation, Crystal structures and defects, X-ray diffraction,
		lattice dynamics, Quantum mechanics and statistical mechanics,
		thermal properties, electrons in metals, semiconductors and
		insulators, magnetic properties, dielectric properties, confinement
NE 222	MEMS: Modeling, Design,	effects. This course discusses all aspects of MEMS technology – from
INL ZZZ	and Implementation	modeling, design, fabrication, process integration, and final
		implementation. Modeling and design will cover blockset models
		of MEMS transducers, generally implemented in SIMULINK or
		MATLAB. Detailed multiphysics modeling may require COMSOL
		simulations. The course also covers MEMS specific
		micromachining concepts such as bulk micromachining, surface
		micromachining and related technologies, micromachining for
		high aspect ratio microstructures, glass and polymer
		micromachining, and wafer bonding technologies. Specific case
		studies covered include Pressure Sensors, Microphone,
		Accelerometers, Comb-drives for electrostatic actuation and
		sensing, and RF MEMS. Integration of micromachined
		mechanical devices with microelectronics circuits for complete
NEGGO	Analag Circuita and	implementation is also discussed.
NE223	Analog Circuits and	The goal of this course is to explore the electronics that needs to
	Embedded System for	be incorporated to create sensor systems and to learn the trade-
	<u>Sensors</u>	offs in design of circuits to maximize performance subject to real
		life design constraints.
		Basic Circuit Analysis and Passive Components; Introduction to
		semiconductor devices and circuits involving Diodes, BJT,
		MOSFET and JFET; Opamp circuits: Transimpedance amplifier,
		Instrumentation amplifier, Comparator, Precision DMM
		application; Tradeoffs between power, noise, settling time and
		cost; Survey of sensors and their datasheets; Active Filters and
		RF Oscillators; Introduction to digital logic, State Machines, Digital
		IO; Microcontroller programming; Communication protocols for
		sensor interfacing; System building
	1	<u> </u>

NE 231	MICROFLUIDICS	This is a foundation course discussing various phenomena related to fluids and fluid-interfaces at micro-nano scale. This is a pre-requisite for advanced courses and research work related to micro-nano fluidics. Transport in fluids, equations of change, flow at micro-scale, hydraulic circuit analysis, passive scalar transport, potential fluid flow, stokes flow Electrostatics and
		electrodynamics, electroosmosis, electrical double layer (EDL), zeta potential, species and charge transport, particle electrophoresis, AC electrokinetics Surface tension, hysteresis and elasticity of triple line, wetting and long range forces, hydrodynamics of interfaces, surfactants, special interfaces Suspensions, rheology, nanofluidics, thick-EDL systems, DNA transport and analysis.
NE 241	Material Synthesis: Quantum Dots To Bulk Crystals	All device fabrication is preceded by material synthesis which in turn determines material microstructure, properties and device performance. The aim of this course is to introduce the student to the principles that help control growth. Crystallography; Surfaces and Interfaces; Thermodynamics, Kinetics, and Mechanisms of Nucleation and Growth of Crystals; Applications to growth from solutions, melts and vapors (Chemical vapor deposition an Physical vapor deposition methods); Stress effects in film growth.
NE 250	Entrepreneurship, Ethics and Societal Impact	This course is intended to give an exposure to issues involved in translating the technologies from lab to the field. Various steps and issues involved in productization and business development will be clarified, drawing from experiences of successful entrepreneurs in high technology areas. The intricate relationship between technology, society and ethics will also be addressed with illustrations from people involved in working with the grass root levels of the society.
NE 312	Nonlinear and Ultrafast Photonics	This is an intermediate level optics course which builds on the background provided in "Introduction to photonics" offered in our department. Owing to the extensive use of nonlinear optical phenomena and Ultrafast lasers in various fields, we believe a good understanding of these principles is essential for students in all science and engineering disciplines, in particular students involved in the area of Photonics, RF and Microwave systems, Optical Instrumentation and Lightwave (Fiber-optic) Communications. In addition, this course intends to prepare students to pursue advanced topics in more specialized areas of optics such as Biomedical Imaging, Quantum optics, Intense field phenomena etc.

NE 314	Samioanduator Onto	Advanced comicanductor concents interhand/introhand
INE 314	Semiconductor Opto-	Advanced semiconductor concepts, interband/intraband
	electronics & Photovoltaics	transitions, defects, donor-acceptor pair transitions,
		excitons/absorption spectra, solar radiation, PV basics, silicon p-
		n junction solar cell in details, thin film solar cells (amorphous Si
		PV, chalcogenides), organic PV, DSSC and perovskite PV, Beyond
		SQ limit, Photoluminescence, Advanced Photoluminescence
		Spectroscopy, III-nitrides and polarization, photodetectors, LEDs,
		OLEDs, Quantum Dot LEDs, semiconductor lasers.
NE 315	Semiconductor Devices for	This course covers modern semiconductor devices commonly
	RF	used in microwave electronics: heterojunction physics, III-V
	and Microwave Electronics	semiconductors including MESFETs, pHEMT and concept of
	and Microwave Electronics	2DEG, modulation doping, fabrication of III-V FETs, RF CMOS and
		basics of RF MOSFET, LDMOS – working, design & RESURF,
		AlGaN/GaN HEMT and concept of polarization, device concepts
		for RF FETs including gate recess, field-plate, JFOM, small-signal
		performance, cut-off frequencies, current collapse & dispersion;
		basics of BJT/HBT for microwave; Gunn diode, IMPATT diode.
NE 317	From natural to	While there are many courses on AI around the world there is no
	artificial intelligence	course where biology is directly correlated to device physics, and
		circuit design and that is the main idea behind the proposed
		course. The first part of the course will introduce the concepts of
		signal processing at synapses and how these signals contribute
		to storage, maintenance and recall of information. We will cover
		morphology and flow of electric signals in neuron, data
		processing in neurons and synapses, synaptic plasticity,
		potentiation, depression, idea of spike time dependent plasticity,
		'integrate and fire' response in a neuron, signal transmission
		through axons, plasticity, reconfigurability and redundancy in a
		neuronal network and finally, what is the current understanding of information storage in neuronal circuit. Based on the biological
		foundation, the course will continue to the device and circuit
		design philosophy that is being taken for designing efficient Al
		hardware platforms. This part will focus on the static and
		dynamic elements being attempted to make a synapse and a
		neuron. The material and circuit properties to mimic the features
		of a neuron and a synapse will be covered. Different approaches
		such as FET, FTJs, memristors and neuristors will be introduced.
		We will discuss strategies to operate the circuit elements on the
		verge of chaos that can enable us to realize intelligence and
		decision-making ability on a chip. Towards the end of the
		curriculum, the students will be asked to come up with their own
		proposals to address specific challenges either at a device or a
		circuit level.
		This course is to narrow the gap between real and artificial
		neuronal networks that could offer cutting-edge exposure and
		motivate students to take on some of the outstanding, high
		reward research challenges in this field.

NE 240	Material design for electronic,
	electromechanical and optical
	functions

Module 1 [14 classes]

Structure and symmetry:

- Properties as relations between cause and effect. Properties as tensors, elementary tensor algebra, matter tensors, field tensors
- b) Structure and symmetry: crystal systems, Bravais lattices, point groups, space groups
- c) Structure (symmetry)-property correlations: Neumann principle, case studies of pyroelectric properties (first rank tensor); dielectric constant, thermal/electrical conductivity (ohms law, hall effect: second rank tensors), piezoelectricity and second harmonic generation (third rank tensors), compliance/stiffness and electrostriction (4th rank tensors)
- d) Experimental measurement of various standard properties

Module 2 [8 classes]

Equilibrium property predictions from thermodynamics:

- Equilibrium properties as double derivatives (or curvatures) of free energies, Cross-coupling (Stress/Strain, Polarization/Field, Temperature/Entropy). Revisit piezoelectricity/converse piezo, pyroelectricity/electrocaloric effects, thermal expansion/piezocaloric effects etc..
- b) Phase transitions (first order, second order), order parameter, elementary stat-mech, equilibrium properties as fluctuation of order parameter, Landau theory
- c) Atomistic origin of selected equilibrium properties: piezoelectricity, electrostriction (anaharmonicity), thermal expansion (anaharmonicity); heat capacity (Debye model)

Module 3 [6 classes]

- a) Dissipative properties as entropy generating, Onsager's formulation, electrical and thermal transport, diffusivity, electrical/thermal resistance, coupled dissipative properties: thermoelectric properties, electromigration
- Atomistic origin of electronic conductivity: Drude model, frequency dependence of conductivity, plasma frequency, conductivity (dissipative) and dielectric constant (equilibrium property) being a part of a complex dielectric function

Module 4 [5 classes]

- a) Relation between equilibrium (fluctuation) properties and dissipative properties from Kramer-Kronig relations
- b) Experimental understanding of various loss processes: dissipation, energy loss and other spectroscopic tools
- Spectroscopy: impedence (nano eV energy losses), microwave spectroscopy, Brilluoin, Raman (micro-m eV), optical (FTIR, UV Vis, Photoluminiscence, UPS: 0.1-10 eV), x-ray absorption and XPS (>100 eV)

Module 5 [2 classes]:

Defects, defects as property deteriorating entities, defects as property enhancing entities, Recent findings on designing new properties through defects and their kinetics: some case studies

NE coa		D I I'm Part Coll DDE LODE M
NE 281	Statistical and probabilistic data analysis techniques	Probability distributions of single r.v, PDF and CDF, , Moments, MGF, CGF, joint PDF, conditional distributions, conditional moments, Bayes theorem, PDFs of functions of r.v, Stochastic processes, simulating stochastic processes, Monte-carlo technique, auto-correlation and power spectra of random processes, estimation of PDF and CDF from data, Parameter estimation: estimators such as MLE, MMSE and Bayes, Cramer-Rao bound, Hypothesis testing: statistical significance, Neyman-Pearson approach, p-value, F-distribution, ANOVA, Introduction to design of experiments
NE 332	Physics and mathematics of molecular sensing	Introduction to biomolecules: DNA, RNA and proteins, information flow in living organisms, transcription, translation, protein synthesis and regulation, architecture of biosensors, receptors, surface functionalization and characterization techniques, antibodies and aptamers, mathematical analysis of target-receptor binding, noise and fluctuations, survey of sensor technologies, ELISA based sensing, fluorescence based sensors, genomic tests based polymerase chain reaction (PCR), plasmonic nanoparticles and lateral flow tests, single molecule
MT 202	Thermodynamics and Kinetics	sensors, transport in biosensors, current research directions Classical and statistical thermodynamics, Interstitial and substitutional solid solutions, solution models, phase diagrams, stability criteria, critical phenomena, disorder-to-order transformations and ordered alloys, ternary alloys and phase diagrams, Thermodynamics of point defects, surfaces and interfaces. Diffusion, fluid flow and heat transfer.
MT 240	Principles of electrochemistry and corrosion	Introduction to electrochemical systems, including batteries, fuel cells and capacitors. Designing electrochemical systems with emphasis on thermodynamics, kinetic, and mass transport limitations. Measuring electrochemical properties with various measurement techniques. Basic electrochemical principles governing corrosion. Types and mechanisms of corrosion. Advances in corrosion engineering and control.
MT 241	Structure and Characterization of Materials	Bonding and crystal structures, Direct and Reciprocal lattice, Stereographic projection, Point and Space Group, Point defects in crystals, Diffraction basics, X-ray powder diffraction and its applications, Scanning and Transmission electron microscopy.

MT 209	Magnetism, Magnetic Materials and Devices	Review of defect classification and concept of defect equilibrium. Review of point defects in metallic, ionic and covalent crystals. Dislocation theory - continuum and atomistic. Dislocations in different lattices. Role of anisotropy. Dislocation kinetics. Interface thermodynamics and structure. Overview of grain boundaries, interphase boundaries, stacking faults and special boundaries. Interface kinetics: migration and sliding. Defect interactions: point defect-dislocation interaction, dislocation-interface interactions, segregation, etc Overview of methods for studying defects including computational techniques A brief review of the fundamentals of solid-state physics; Classical and quantum mechanical pictures of magnetism; spin orbit coupling, crystal field environments, diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, dipolar and exchange interactions, magnetic domains, magnetic anisotropy, magnetostriction, superparamagnetism, biomagnetism, and spin glass
		Bulk magnetic Materials: Transition and rare earth metals and alloys. Oxide based magnetic materials. Hard, soft and magnetostrictive materials, Magnetic shape memory alloys, Structure-microstructure-magnetic property correlations.
		Low dimensional Magnetic systems and devices: Magnetic nanostructures, thin films, and epitaxial heterostructures; exchange bias and exchange coupling, and magneto-optical materials and devices, AMR, GMR, TMR, spin-transfer torque, spin-orbit torque and spin-Hall effect; Multiferroics, magnetoelectric and magnetoionics; nonvolatile magnetic memory, synaptic and neuromorphic computing devices;
		Experimental techniques: VSM, SQUID, Mossbauer, MFM, Magneto-transport, Magnetooptical Kerr-effect, TEM for magnetic characterization, XMLD and XMCD.
MT 261	Organic Electronics	Fundamentals of polymers. Device and materials physics. Polymer electronics materials, processing, and applications. Chemistry of device fabrication, materials characterization. Electroactive polymers. Device physics: Crystal structure, Energy band diagram, Charge carriers, Heterojunctions, Diode characteristics. Device fabrication techniques: Solution, Evaporation, electrospinning. Devices: Organic photovoltaic device, Organic light emitting device, Polymer based sensors. Stability of organic devices.

AT 65.	I	
QT 204	Introduction to Materials for Quantum Technologies	Recap of basic solid-state physics: Electronic band structure, phonon band structure, electron-phonon interactions, electron transport and modeling in nanoscopic devices; Topology and quantum devices: Semiconductor heterostructures, two-dimensional electron systems, topological materials, introduction to superconductivity; Correlations and disorder: Electron-electron interactions, Peierls distortion and transition, disorder physics, Anderson localization, quantum devices through correlations, magnetic materials, dielectric materials and ferroelectrics, phase transitions; Optics and optical materials: Light-matter Interaction, introduction to nonlinear optical materials, optical properties of semiconductors and metals, properties of nanostructured materials, plasmonics.
QT 202	Introduction to Quantum Measurement and Sensing	Introduction to classical measurement; Introduction to quantum mechanics through measurement, the quantum measurement postulate and its consequences, standard quantum limits (SQL); Types of measurements: Direct and indirect measurements, orthogonal, non-orthogonal, quantum non-demolition measurements; Linear measurements and amplification; Beyond the SQL: Parametric amplification; Case studies of measurement: Quantised charge measurement, single photon detection, non-demolition method for photon quadrature measurements etc.; Control of single quantum systems; Introduction to decoherence: Decoherence as measurement by environment, characterising decoherence in qubits; Openloop control and stabilisation of qubit states.
QT 207	Introduction to Quantum Computation	Axiomatic quantum theory; Quantum states, observables, measurement and evolution; Qubits versus classical bits; Spinhalf systems and photon polarizations; Pure and mixed states; Density matrices; General quantum evolution and superoperators; Quantum correlations; Entanglement and Bell's theorems; Turing machines and computational complexity; Reversible computation; Universal quantum logic gates and circuits; Quantum algorithms; Database search; Fast Fourier Transform and prime factorisation.

QT 209	Introduction to Quantum Communications and Cryptography	Geometrical and wave optics; Quantisation of the electromagnetic field; Photon number states, coherent states; Squeezing, phase shifts and beam-splitters; Digital communication; Communication channels; Information and entropy; Shannon's theorems; Quantum communication, dense coding and teleportation; von Neumann entropy and quantum channel capacity; Errors and error correction codes; Cryptography and one-time pad; Public and private key cryptography; Quantum key distribution; Quantum cryptography; Experimental implementation of quantum cryptography protocols.
QT 211	Basic Quantum Technology Laboratory	Introduction to RF equipment: VNA, Signal generators, AWGs, Oscilloscopes. Basics of microwave engineering: Impedence, Sparameters. Characterisation of passive RF components: Cables, Terminations, Attenuators, Directional couplers, RF mixers, Filters, Circulators and Isolators. Probability and Statistics: Binomial, Poisson and Gaussian distributions, Fitting of experimental data, Error analysis. Use of Qiskit and QuTiP Python packages for Quantum Computation and Quantum Optics: Simulation of basic quantum Hamiltonians, Dissipative systems, Quantum logic circuits.