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Abstract: Phase and/or intensity modulation techniques to broaden the 
Linewidth of an optical source are well known methods to suppress 
stimulated Brillouin scattering (SBS) in optical fibers. A common technique 
used to achieve significant bandwidth enhancement in a simple fashion is to 
phase modulate with a filtered noise source. We will demonstrate here that, 
in this case the stochastic nature of noise requires an inclusion of length 
dependent corrections to the SBS threshold enhancement. This effect 
becomes particularly significant for short fiber lengths common to most 
high power fiber amplifiers. 

©2013 Optical Society of America 

OCIS codes: (290.5900) Scattering, stimulated Brillouin; (190.4370) Nonlinear optics, fibers; 
(060. 3510) Lasers, fiber; (070.4340) Nonlinear optical signal processing; (060.5060) Phase 
modulation. 

References and links 
1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives 

[Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). 
2. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. 

Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 
(2010). 

3. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, 
A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four 
narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009). 

4. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent 
combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011). 

5. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. 
Photon. 2(1), 1–59 (2010). 

6. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump 
wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989). 

7. G. P. Agrawal, “Nonlinear fiber optics, 4th ed,” (Academic Press, 2007). 
8. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency 

combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 
3066–3068 (2012). 

9. C. E. Mungan, S. D. Rogers, N. Satyan, and J. O. White, “Time-dependent modeling of Brillouin scattering in 
optical fibers excited by a chirped diode laser,” IEEE J. Quantum Electron. 48(12), 1542–1546 (2012). 

10. A. Kanno, S. Honda, R. Yamanaka, H. Sotobayashi, and T. Kawanishi, “2.56 x10 ^{17} Hz/s frequency chirp 
signal generation using DSB-SC optical modulation without optical filters,” In The European Conference on 
Lasers and Electro-Optics. Optical Society of America (2011). 

11. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and 
laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010). 

12. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated 
Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 
(2012). 

13. S. M. Kay, Fundamentals of statistical signal processing, volume I: estimation theory (Prentice-Hall, 1993), Vol. 
1. 

14. R. G. Gallager, “Stochastic processes: theory for applications,” (Draft, 2012) 
http://www.rle.mit.edu/rgallager/notes.htm. 

#179592 - $15.00 USD Received 9 Nov 2012; revised 17 Jan 2013; accepted 12 Feb 2013; published 19 Feb 2013
(C) 2013 OSA 25 February 2013 / Vol. 21,  No. 4 / OPTICS EXPRESS  4677



1. Introduction 

In recent years there has been significant interest in scaling the power of narrow linewidth 
fiber lasers [1] to the kW levels. One of the key motivators is possibility of combining 
multiple narrow linewidth lasers either through coherent combination or wavelength 
multiplexing to create very high power sources [2–4]. Stimulated Brillouin scattering (SBS) is 
the primary non-linearity affecting narrow linewidth fiber lasers and amplifiers and at these 
power levels, its management is of utmost importance. SBS causes backward scattered light at 
a slightly lower frequency to grow exponentially with the input signal power. It is often 
characterized in a system by a power threshold which is the power level at which the 
backward scattered light reaches a certain fraction of the signal light. Several threshold 
definitions exist depending on this ratio (3-dB, 20-dB, 30-dB etc) [5]. In this work, we will 
look primarily at the relative change in thresholds which is mostly independent of the actual 
definition used as long as it is consistent. 

A well known strategy to suppress SBS is to broaden the Linewidth of the laser [6, 7]. The 
Brillouin process has a Lorentzian gain profile ( )Bg f  characterized by a bandwidth 

BυΔ which has a value in 10s of MHz for Silica fibers. This bandwidth is a measure of the 

response time of the process and is related to the acoustic phonon lifetime ( BT ) by the 

expression / 2 1/ 2B B BTυ π πΔ = Γ = ( BΓ is the gain bandwidth in angular frequency) [7]. 

Qualitatively, when the laser spectrum is much larger than ,BυΔ we can look at it as being 

composed of multiple segments of width .BυΔ  This corresponds to an enhancement in power 

threshold given by the number of segments which is ~ / Bf υΔ Δ where fΔ  is the bandwidth of 

the laser. In more detail, if ( )S f is the laser spectrum, the enhancement in threshold (which 
we will refer to as the enhancement factor ( EF )) is given by 

 
( ( ) ( ))

( ( ))
B

B

S f g f
EF

g f

σ
σ

⊗=  (1) 

where, ()σ  is a measure of the spectral width. This can be the full width at half maximum 
(FWHM) for smooth spectra like the Lorentzian or and something more appropriate for 
complicated spectra. In case of a Lorentzian laser lineshape, the above equation reduces to the 
simple relation 

 1
B

f
EF

υ
Δ= +

Δ
 (2) 

From the above equation we see that a laser Linewidth of 5GHz corresponds to over 100X 
improvement in SBS threshold for a gain bandwidth of 50MHz. For the purposes of coherent 
or wavelength combining, GHz class laser linewidths seem to be sufficient [2–4]. 

Linewidth broadening can be achieved either through directly modulating the laser diode 
or through external modulation of a single frequency seed. The common techniques include 
creating a frequency chirp, phase modulation with a sinusoid or phase modulation with noise 
waveforms. Driving with a sinusoid [6] generates discrete harmonics spaced by the repetition 
rate and by ensuring that the repetition rate of the sinusoid is larger than the gain bandwidth, 
an enhancement in threshold can be obtained. With phase modulation alone, the discrete 
harmonics are not uniform in intensity. This results in under utilization of the total spectral 
width. Another disadvantage with discrete spectra is that the threshold reduction is related to 
the number of lines rather than the total bandwidth. This necessitates the repetition rate to be 
close to the SBS gain bandwidth for spectral efficiency. To achieve a 5GHz bandwidth for 
example, the total number of lines need to be > 100 (at 50MHz gain bandwidth) which is 
quite difficult [8]. Chirped waveforms are another common modulation scheme [9]. For high 
power amplifiers, the interaction lengths are usually of the order of a few meters 
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(corresponding to time windows of 10s of ns). So the chirp rate necessary to obtain GHz class 
bandwidths is 1017 Hz/s or greater which is again quite difficult to achieve in practice [10]. 

 

Fig. 1. Schematic showing a narrow linewidth input source to a power amplifier. The narrow 
linewidth source is generated by intensity (IM) and/or phase modulation (PM) with noise of a 
Single frequency (SF) seed. A low pass filter (LP) is used to control the bandwidth. 

Due to the above reasons, broadening with noise is the commonly preferred strategy. 
Another key advantage is its inherent simplicity. Figure 1 shows the schematic of a single 
stage high power amplifier with a narrow Linewidth seed source created by phase and/or 
intensity modulation with noise of a single frequency seed source. An amplifier is used to 
obtain suitable voltage levels and a low pass filter (possibly with further spectral shaping) 
allows for control of the optical bandwidth. Modulation with noise creates a continuum 
spectrum around the optical carrier with a lineshape depending on the filtering conditions 
[11]. Significant bandwidth enhancement can be achieved allowing for strong enhancement in 
SBS thresholds. 

There has been anecdotal evidence that in high power fiber amplifiers, the SBS 
suppression achieved with noise modulation is smaller than what is anticipated. Recently, 
there was an interesting report from Zeringue, Dajani et al [12] where they investigate this 
effect in passive optical fibers through first principles numerical simulations. By numerically 
solving the equations for the optical field and the acoustic field together they demonstrated 
that the SBS threshold enhancement for short fiber lengths can be significantly smaller than 
what is expected from its bandwidth. This reduction was attributed to contributions from 
phase mismatched terms in the SBS process. For signal bandwidths in the GHz class, the 
coherence length of the signal is significantly smaller than the length of the fiber medium. In 
this case, the contributions from phase mismatched terms are expected to be small [6]. 

Here we offer a different perspective to the problem. We attribute this reduction to the 
stochastic nature of noise requiring a modified interpretation of the spectral width. We show 
that by incorporating the stochastic nature of noise, the observed enhancement of SBS in short 
optical fibers can be explained through the conventional model (Eq. (1). With a standard 
model for the modulating noise, namely a white Gaussian process, we derive an analytic 
expression for the length dependent reduction in enhancement. 

2. Model 

 

Fig. 2. An instance of the filtered noise time domain waveform used to modulate the phase of 
the optical carrier. Actual power spectrum and the power spectral density. 
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Figure 2 shows a specific instance of the low pass filtered noise waveform. This waveform is 
used to modulate the phase of an optical carrier and the spectrum obtained (blue) is shown. 
Also shown is the power spectral density (red) of the process (defined as the Fourier 
transform of the noise autocorrelation function). We see that the specific power spectrum is 
very different from the power spectral density. This is the case for random processes like 
noise while for deterministic waveforms, they are identical. Power spectral density is the 
appropriate measure for noise waveforms since the spectrum is a statistical quantity which 
changes every instance. The actual spectrum is of a broken nature and an appropriate measure 
of its spectral width is expected to be smaller than that of the power spectral density. If 

( )kx t is an instance of the waveform with power spectral density ( ),S f ( )kX f is its transform 

and has its power spectrum defined by 
2

( ) ( )k kS f X f=  then [13, 14] 

 
1

( ) lim ( ) ( )k kk
k

S f S f S f
k→∞

= =  (3) 

This interesting detail explains the connection between the power spectral density and the 
instantaneous spectra for stochastic waveforms like noise. Different methods for measuring 
optical spectra like the optical spectrum analyzer, Fabry-perot interferometers, delayed 
heterodyne/homodyne methods etc all involve averaging and provide the power spectral 
density. Averaging inherent to the system (like the integration time of a photo-detector) result 
in the displayed spectrum to be the ensemble average of the different instances which is the 
power spectral density. Here we assume an Ergodic process whose time average is the same 
as the ensemble average. To obtain the SBS threshold enhancement, the relevant quantity is 
the width of the actual power spectrum. In the absence of sufficient averaging (which we will 
show is related to shorter fiber lengths) the width of the power spectrum is narrower than that 
of the power spectral density and this manifests as an apparent reduction in the enhancement 
factor in comparison to what is calculated using the measured linewidth (i.e. width of the 
power spectral density). 

The SBS gain bandwidth BυΔ gives us an intrinsic time scale. This also provides an 

equivalent length scale BL defined as the length travelled by light in the fiber in a time window 

of size (1 / BυΔ ) and given by 

 B
fiber B

c
L

n υ
=

Δ
 (4) 

Where ' 'fibern is the effective refractive index of the optical fiber. We will model the SBS 

process as acting upon the signal in time windows of size (1/ )BυΔ  or length segments of .BL  
For a single segment, the effective power spectrum is just the power spectrum of the signal in 
that segment. For a length L of the fiber, the number of instances now becomes / Bk L L= and 

the effective spectrum would be the average of ' 'k  instances. Figure 3 shows the schematic 
of the model. The effective spectrum for a given length is the mean power spectrum of every 
segment preceding it. We see that length of the fiber plays the role of a smoothening 
parameter for the effective spectrum. For long fiber lengths, the number of instances will be 
large and from Eq. (3), the effective spectrum will be the same as the power spectral density. 
However, for short lengths, more complicated behavior is observed. 
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Fig. 3. The fiber (and the time domain waveform) used for intensity or phase modulation is 

considered in BL  sized segments. The effective spectrum for a specific fiber length is the 

mean of the power spectrum of every segment preceding it. The effective spectrum smoothens 
out as the fiber length increases. 

It is interesting to look at the physical basis for this model. The spectrally dependent gain 
for the SBS process is an exponential function of the signal spectrum. For a spectrally flat 
optical noise seeding the process, the Stokes light will acquire a spectral shape corresponding 
to an exponential of spectrum (scaled appropriately) of the signal light. Accounting for the 
time window inherent to the SBS process (due to its response time), the net optical gain for a 
system composed of multiple segments (windows) is the product of gain in individual 
segments. Due to exponential nature of gain, this will correspond to the exponential of the 
sum of spectra from individual segments. On normalizing for the total power, the effective 
spectrum is just the mean of the spectra from individual segments. In case of constant power 
propagating through the fiber, the averaging is standard while in the case of power varying 
with position; it will be a weighted average. 

The analysis strategy will be to first obtain the statistics of the effective spectrum for a 
given fiber length. We will then obtain the enhancement factor from Eq. (1) together with a 
more appropriate measure for spectral width. 

3. Analysis: passive, low-loss fibers 

Let ( )x t represent the time domain envelope and ( )kW t  represent the windowing function for 

the ' 'k th segment. The effective signal for the segment is ( ) ( ).kx t W t  The windowing function 

in a simplistic case can be a rectangular window of width given by 1/ .BυΔ  More generally 
there can be additional structure arising from the Lorentzian lineshape of the SBS gain. Let 

( )r
kX f and ( )c

kX f be the real and complex components of its Fourier transform. By 
multiplying with a window function in time, we have introduced spectral correlations 
(smoothening) in scales of the Brillouin gain bandwidth. So, it is sufficient to focus on the 
spectral samples ( )r

k nX f and ( )c
k nX f  where , .n Bf n nυ= Δ ∈ Ζ  This windowing captures in a 

way the convolution present in Eq. (1) and inversely, the convolution itself can be seen as an 
effect due to an inherent time window of the Brillouin response. 

For phase or intensity modulation with a noise source which is a stationary Gaussian 
random process with zero mean, we have – 

Theorem 1. ( )r
k nX f , ( )c

k nX f are independent, identically distributed (iid) Gaussian 
random variables with zero mean. 

In demonstrating this we will use the following established result without proof for linear 
functionals of Gaussian random processes [13, 14] 
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“If ( )x t is a zero mean Gaussian random process, ( ), ( )i jg t g t are real functions in 2L with 

identical norms and are elements of an orthogonal set, then the linear functionals defined by 

( ) ( )i iZ x t g t dt
∞

−∞

=  and ( ) ( )j jZ x t g t dt
∞

−∞

=  are independent and identically distributed 

Gaussian random variables.” 
For the case of amplitude modulation with a zero mean Gaussian process ( ),a t  we have 

 

( )

( )

( ) ( ) cos(2 ) ( )

( ) ( )sin(2 ) ( )

i

j

g t

r
k n n k

g t

c
k n n k

X f a t f t W t dt

X f a t f t W t dt

π

π

∞

−∞

∞

−∞

=

=








 (5) 

The independence of ( )r
k nX f and ( )c

k nX f is tested by the orthogonality integral 

 
21

sin(2*2 ) ( )
2 n kf t W t dtπ

∞

−∞
  (6) 

For the model of a rectangular window ( )kW t  of width (1 / ),BυΔ  the orthogonality and 

identical norms of cos(2 ) ( )n kf t W tπ and sin(2 ) ( )n kf t W tπ  is direct since the time window is an 
integral multiple of the period of the sinusoids. The theorem follows immediately from an 
application of the above result. In a more general situation, even with additional amplitude 
structure in the windowing function, Eq. (6) shows that, with an ‘odd’ or ‘even’ symmetry 
for ( ),kW t  the orthogonality condition will still hold. For example, the Fourier transform of a 

Lorentzian gain profile has the form exp( )tα−  which has ‘even’ symmetry. 

For the case of phase modulation with a zero mean Gaussian random process ( ),tφ  the 
Fourier transform components are - 

 

( ) cos ( )cos(2 ) ( ) sin ( )sin(2 ) ( )

( ) cos ( )sin(2 ) ( ) sin ( )cos(2 ) ( )

r
k n n k n k

c
k n n k n k

X f t f t W t dt t f t W t dt

X f t f t W t dt t f t W t dt

φ π φ π

φ π φ π

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

= −

= +

 

 
 (7) 

For a zero mean Gaussian process ( ),tφ cos ( )tφ and sin ( )tφ are both zero mean iid Gaussian 
random processes. Looking at each of the four terms individually in the above equations and 
using similar arguments as in the amplitude modulation case, it is clear that they are all 
mutually independent and identically distributed Gaussian variables. The random variables 
corresponding to the sum and difference of zero mean iid Gaussian random variables are both 
zero mean, iid Gaussian variables and hence the theorem follows. The above analysis can be 
further generalized to the case of simultaneous intensity and phase modulation with two 
independent noise waveforms. 

Theorem 2. The effective spectrum for k  instances ( )k nS f is “Chi-squared” distributed of 

order 2k  [13] 
We have 

 
2 2

1 1

( ) ( ) ( )
k k

r c
k n i n i n

i i

S f X f X f
= =

= +   (8) 
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“Chi-squared” is the distribution arising from the sum of squares of independent and 
identically distributed Gaussian random variables. Theorem 1 shows the two components of 
the Fourier transform within a time segment to be iid. Assuming that the noise waveform has 
a bandwidth much wider than BυΔ (correlation time much shorter than the time segment), 
Fourier transform components arising from two non intersecting time windows are 
independent. The identical distribution arises from the stationarity of the noise process. So, 
the above equation has 2k  independent and identically distributed terms which are squares of 
Gaussian random variables. 

Equation (8) provides us the statistics for the effective power spectrum. For a measure of 
spectral width, we will use the following definition – 

 
2

2

( ( ) )

( )

k

k

S f df

S f df
σ = 


 (9) 

Over conventional measures of spectral width like the FWHM, the above definition captures 
much better the spectra which are broken. This definition is used frequently to obtain the 
spectral width of noise spectra and a similar definition is used to evaluate the effective area of 
optical fibers [7]. The spectral smoothening introduced by the windowing allows us to 
approximate well the above continuous definition by the following discrete sum - 

 

2

2

( ( ))

( )

k n
n

B
k n

n

S f

S f
σ υ= Δ




 (10) 

where , .n Bf n n Zυ= Δ ∈  In the above definition, since the individual spectral samples are now 
independent of each other, the sum and expectation operations can be interchanged. The 
expression still has a quotient which cannot be readily simplified. We will use a simple 
physical argument to overcome this. The numerator is just a measure of the total energy in 
one segment squared. For CW operation, particularly in phase modulated cases, the variation 
in total power is low in time scales of the SBS process. Hence the above expression simplifies 
to 

 

2 2

2
2

( ( )) ( ( ))

( )
( )

n n
n n

B B

k n
k n n

n

S f S f

S f
S f

σ υ υ= Δ = Δ
 


 (11) 

where ( ) ( )n k nS f S f= and we have used the mutual independence of the spectral samples. 

For “chi-squared” distributions of order "2 "k  and mean ( ),nS f we have 

 2 2 2
2

2 (2 2) 1
( ) ( ) ( )

(2 )k n n n

k k k
S f S f S f

k k

+ += =  (12) 

The effective spectral width is 

 

2

2

( ( ))

1 1( )

n
n

B ideal

n
n

S f
k k

k kS f
σ υ σ= Δ =

+ +




 (13) 

where idealσ is the spectral width corresponding to the power spectral density of the waveform. 
Converting these to enhancement factors using Eq. (1), we have a simple relation - 
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1 ideal

k
EF EF

k
=

+
 (14) 

where idealEF is the anticipated enhancement factor from the power spectral density alone. 

Substituting for k in terms of L and BL , we have 

 
( / )

( / ) 1
B

ideal
B

L L
EF EF

L L
=

+
 (15) 

or in terms of fiber parameters 

 B
ideal

B
fiber

EF EF
c

n L

υ

υ

Δ=
Δ +

 (16) 

From the above equations, we see that the stochastic nature of noise has introduced a length 
dependent reduction of the enhancement factor compared to what is expected from the power 
spectral density. It is interesting to note that the reduction in enhancement depends only on 
the length of the fiber and does not depend on the linewidth. Furthermore it is independent of 
the modulation scheme (PM or IM) and spectral shaping of the noise waveform. 

 

Fig. 4. Plot showing enhancement reduction (relative to ideal value) versus normalized length 
of the fiber. 

Figure 4 shows the plot of enhancement reduction as a function of normalized length. Also 
shown is a simulation of our model (section 2) numerically. The two match very well 
indicating the correctness of the theoretical analysis of our model. For short lengths, the 
reduction in enhancement is significant. For silica fibers with a gain bandwidth of 50MHz, 

BL  ~4m. For a fiber length of 4m, the effective enhancement in threshold due to line 
broadening is only 0.5 times the ideal value. Even for fiber lengths as long as 40m 
(corresponding to a normalized length of 10), the actual enhancement is 10% smaller than the 
ideal value. This shows that though the reduction is most significant at short fiber lengths, 
even at much longer lengths, its effect can be substantial. 

An experimental investigation is necessary to verify the correctness of this analysis. We 
do however have for comparison the results from the first principles numerical work reported 
in ref [12]. Figure 5 shows the comparison between the two. Though the two do not match 
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exactly, a good agreement between them is observed. This further strengthens our 
interpretation of the observed behavior. A point to note is that, in our model, we discretized 
the length parameter based on physical arguments and after analysis replaced the obtained 
discrete correction factor with its continuous counterpart. For short normalized lengths, 
particularly below 1 (smaller than the discretization) this can be a potential source of error. A 
continuous domain reformulation and a more thorough investigation of the SBS process for 
very short fibers would shed more light on this. 

 

Fig. 5. Comparison between this work and the numerical results from ref [12]. 

4. Analysis: general case 

In the previous section we looked at passive, low loss fibers. A length dependent correction 
factor was obtained for the SBS threshold which becomes significant at short lengths. 
Practically, such a situation often arises in fiber amplifiers where there is also a length 
dependent power variation. In such cases, the effective length cannot be identified with the 
physical length. In this section we will account for position dependent power variation and 
obtain a modified factor. We will then generalize this to systems having position dependent 
power as well as other fiber parameters. As before, we utilize a discrete model to obtain the 
correction factor and then generalize it to its continuous counterpart. 

In our model, we account for the power variation with length by using a weighting 
parameter in the sum for effective spectra. Equation (8) is modified as 

 
2 2

1 1

( ) ( ) ( )
k k

r c
k n i i n i i n

i i

S f w X f w X f
= =

= +   (17) 

Where iw is the weighting parameter. Since the effective contribution of each spectrum is 
proportional to the energy in each segment, we have 

 

1 1

i i
i k k

i i
i i

E P
w

E P
= =

= =
 

 (18) 

iE and iP  are the energy and mean power of each segment. The weighted sum for the effective 
spectra (Eq. (17) has a distribution which is referred to as the “Generalized chi-square 
distribution”. Rewriting Eq. (17) in spectral components we have, 
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1

( ) ( )
k

k n i n
i

S f w S f
=

=  (19) 

2 ( )nS f is “chi-squared” of order 2 with mean ( ),nS f  2
2var( ( )) ( ),n nS f S f=  hence 

 2 2 2

1

( ) (1 ) ( )
k

k n i n
i

S f w S f
=

= +  (20) 

We have, 

 

2

2 1
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1

( )

k

ik
i

i k
i

i
i

P
w

P

=

=

=

=





 (21) 

Interestingly, this form is similar to Eq. (10) and using the length discretization of ,BL  the 

corresponding continuous form is readily identifiable as / ,B effL L  where the effective length 

effL is 

 
2

2

( ( ) )

( )
eff

P z dz
L

P z dz
= 


 (22) 

Using this in Eq. (13), we have 

 
/

1 /
eff B

ideal
eff B

L L

L L
σ σ=

+
 (23) 

In case of passive fibers, the reduction factor in spectral width will directly manifest as the 
reduction in enhancement factor. However in the case of fiber amplifiers, the backward SBS 
wave has both the non-linear gain component due to SBS and the rare-earth gain component. 
Modification of enhancement factor depends on their relative contributions. We can only say 
that the non-linear gain component due to SBS, exp( ( ))SBSG ideal will be modified 

to
1 /

exp( ( )).
/

eff B
SBS

eff B

L L
G ideal

L L

+
 However, in high power fiber amplifiers, the rare-earth gain 

is usually much smaller than the non-linear gain when the SBS threshold occurs. In such 
cases, the effective enhancement factor can be approximated to 

 
/

1 /
eff B B

ideal ideal
eff B

B
fiber eff

L L
EF EF EF

cL L
n L

υ

υ

Δ= =
+ Δ +

 (24) 

In the above analysis we only considered a variation of power with length. In practice there 
can be circumstances where fiber parameters like the effective area, Brillouin gain co-efficient 
etc can change within the system. A simple example is when a larger delivery fiber is spliced 
to the gain fiber in a high power fiber amplifier. A minor modification to the above analysis is 
sufficient. In Eq. (18) we assumed the weighting parameter is dependent only on the mean 

power. The SBS gain however has the following form exp( )B

eff

g P
L

A
 where Bg  is the Brillouin 

gain coefficient and effA is the effective area. So, in cases where the other parameters are 
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changing as well, the weighting parameter should contain the net factor .B

eff

g P

A
 By 

generalizing the definition of effL to 
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( ) ( )
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B
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B
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g z P z
dz

A z
L

g z P z
dz

A z

=



 (25) 

We believe the same expressions for the spectral width reduction and enhancement reduction 
can be used. 

5. Summary and discussion 

Linewidth broadening of lasers with noise is a simple and common technique used to enhance 
the threshold for SBS. We showed that due to stochastic nature of noise, the obtained 
enhancement of SBS threshold is smaller than what is ideally expected from the power 
spectral density of the optical waveform. This effect becomes particularly important for 
shorter fibers. In this work, using a common model for noise, namely a Gaussian process, we 
obtained simple expressions for the reduction in enhancement factors as a function of length. 
We analyzed both cases where the power level and fiber parameters are constant or varying 
over the length of the fiber. We also looked at both phase and intensity modulation and 
demonstrated that the enhancement reduction factor is independent of the modulation scheme. 
We believe the model used here can be useful whenever there is a time dependent 
modification of the signal spectrum. 

The statistical behavior of the noise broadened spectra has another interesting aspect. The 
net SBS gain will be a statistical variable with enhanced variation as the fiber lengths get 
shorter. This implies that the backward SBS signal can have significant intensity noise even 
when the forward signal has very low intensity noise. In particular, rare but possibly 
catastrophic events caused due to high gain events can occur. It is expected that when the 
mean gain is close to ideal gain, the variation in actual gain is small. When that is not the 
case, even though the mean gain might still have the system below SBS threshold, the 
variation in actual gain has the possibility to cause isolated but possibly dangerous events. 
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