

Fiber Lasers: Fundamentals and Applications

Lecture 1

V R Supradeepa

Center for Nano Science and Engineering (CeNSE)

Indian Institute of Science

Personal Background

Indian Institute of Science (Aug 2014 -)

Assistant Professor, Centre for Nano Science and Engineering

Research: Fiber Lasers, Silicon Photonics, Optical Communications

OFS Laboratories (Feb 2011 – July 2014)

Optical Fiber Solutions division of Bell laboratories spun off in 2002 into a separate R&D center

Research Scientist

Research: Fiber Lasers, Nonlinear Fiber Optics

Purdue University (Aug 2006 – Jan 2011)

PhD in Electrical and Computer Engineering

Research: Optical signal processing and characterization, Microwave Photonics, Frequency Combs and Metrology (Advisor: Prof Andrew M. Weiner, dept of ECE)

Lasers: Operating Principle

A Laser is basically an optical feedback oscillator

Spontaneous and Stimulated Emission

Feedback

Various other types of feedback possible

A brief history of lasers

Albert Einstein – 1917 (Stimulated Emission)

• Laid the foundation for lasers

Charles Townes, Jim Gordon, Arthur Shawlow (Columbia)

• Laser theory, Masers, credited for invention of masers

Gordon Gould (1959)

Patent on fabry – perot resonator for lasers, came up with the word laser

Ted Maiman (1960) – First Laser (Ruby)

High Power Laser Technologies

Solid State Lasers

Thermal limitations – causes beam degradation

Efficiency

Carbon-di-oxide Laser

Low efficiency

Continuous Maintanance

Large form factor

Fiber Lasers

From encyclopedia of laser physics and technology

Fiber Lasers

Why High Power (Fiber) Lasers ?

Defence

- LIDAR
- Directed Energy

And many more

Industrial

- Material Processing
 - From automobiles to semiconductors

Medical

Laser surgery

Fiber Lasers in Action

Our Sun ~ 100 W per sq ft (0.1 square meter)

This Laser transmits light in an area of 10⁻¹¹ square meter

What does this mean ? This source is just a little brighter than our sun – by 1000000000 times !

In a camera sensitive to IR wavelengths

High Power Rare-earth doped fiber lasers

The rare-earth doped core absorbs and reemits the pump light into a high brightness beam (multimode to singlemode conversion)

Why Fiber Lasers ?

Distributed heat load

Fiber

For a long cylinder – Area/Volume ~ (r/L)

Single Mode or Multimode

High Power Fiber Lasers as Brightness Convertors

A 1W laser which can only be focused to 1mm beams

• More of a heater than anything else

A 1W laser which can be focused to a 1micron spot

• Can cut metal

Fundamentally, fiber lasers or most optically pumped high power lasers are brightness convertors.

Characterizing the brightness of a beam

How do we characterize the true brightness of a beam ?

A Gaussian beam is optimal for free space propagation, diffraction limited.

Brightness is characterized by how Gaussian like the beam is.

M² value characterizes the beam

$$\theta = M^2 \frac{\lambda}{\pi W_0}$$

A brief history of fiber lasers

Ted Maiman (1960)

• First laser

Elias Snitzer(1961)

• First fiber laser, 30micron core, 300 micron cladding

However, after this it went no where for a long time ... why ?

What happened to Fiber Lasers after their invention ?

No important application

Optical communications, laser material processing were all at their infancy

Problems with pumping

Fiber lasers require pumping with other (albeit lower quality) lasers). Diode lasers were not there.

Flash lamp pumped solid state lasers were much better

What happened to Fiber Lasers after their invention ?

High Loss in fibers

Fibers had very high loss (15dB/m). Not sustainable

Problems with pump coupling

Invention of the EDFA

Powered the tremendous growth of internet

Advances made in amplifier development, components, doped fibers etc applied well to high power fiber lasers

Low Loss Fibers

Development of high power pump diodes

This was also applicable to solid state lasers

Better pump coupling

All fiber architectures - compact, robust, fiber delivery

Schematic of a Modern High Power CW Fiber Laser

Classes of High Power/Intensity Fiber Lasers

	Ultrafast		Pulsed		Continuous	
	 Athermal 		Thermal		wave	
	processing		(fine		 Thermal 	
	• Fundamental		features)		material	
	Physics		• Tissue		processing	
	•		ablation		 Defense 	
	• Nuclear		• LIDAR		• Pump	
	fusion				laser	
					sources	
atto femto		o pi	co na	ano micro		conds
Time scales						