

Fiber Lasers: Fundamentals and Applications

Lecture - 3

V R Supradeepa

Center for Nano Science and Engineering (CeNSE)

Indian Institute of Science

Fiber Laser Characteristics

- Resonator Types
- Laser parameters Threshold and Efficiency

Linear cavity, Fabry Perot, DBR

In each resonator type, pumping direction can be forward, backward or bidirectional

Ring Cavity

Distributed Feedback cavity

From SPIE Optical Engineering

Master Oscillator, Power Amplifier (MOPA)

Laser Parameters: Threshold, Slope Efficiency

Frequently: Lower threshold means lower efficiency

From encyclopedia of laser physics and technology

Schematic of a High Power CW Fiber Laser

Key components

- Laser diodes
- Gain fiber (Rare earth doped)
- Fiber mirrors
- Laser diode (Pump) combiner
- Pump dump

Key process steps

- Design
- Optical fiber splicing
- Fiber recoating
- Measurement and testing

Starting Point: High Power Laser Diodes

High Power Laser Diodes

Schematic of a High Power CW Fiber Laser

Key components

- Laser diodes
- Gain fiber (Rare earth doped)
- Fiber mirrors
- Laser diode (Pump) combiner
- Pump dump

Key process steps

- Design
- Optical fiber splicing
- Fiber recoating
- Measurement and testing

Rare-earth Doped Optical Fibers

From heraeus

Rare-earth Doped Optical Fibers

Tube collapse

Optical Fiber Preforms

From heraeus

Rare-earth Doped Optical Fibers

Optical Fiber Draw

For double-clad fibers: a lower index polymer coating is applied after draw

From heraeus, bell labs

Absorption in Rare earth Doped Fibers

Net absorption ~ core absorption*(core area)/(cladding area) (wavelength dependent)

Some numbers – core abs (Yb doped fiber at 975nm) ~700dB/m, core, cladding dimensions – 6/125 micron

Net absorption ~ 1.6dB/m (at 975nm)

Double Clad Fibers: Cladding Effects

Early cladding pumped fiber lasers had unnaturally low efficiency !

Fiber Mirrors: Fiber Bragg gratings

Core Refractive Index

Reflected wavelength = 2*neff*period

From wikipedia

Fiber Bragg gratings: Fabrication

From Ibsen Photonics

Pump Combiners

Pump combiners combine multiple diode modules

Brightness conservation –

Total input brightness >= Output brightness

For optical fibers – a measure of brightness = fiber diameter X NA (numerical aperture)

NA =
$$\sqrt{n_{core} \wedge 2 - n_{cladding} \wedge 2}$$

Pump Combiners

Output properties should be the same as the gain fiber

• Currently the choice of gain fiber properties is small – NA = 0.45 and D = 125, 200, 250 and 400 micron

Input fibers are decided by the pump diodes

- Current dimensions 105micron, 200 micron, NAs of 0.15 and 0.22
- Output powers per module ~ 10W, 25W, 55W, 80W....

Combiner brightness conservation equation

$$sqrt(n) * D_{input} * NA_{input} = D_{output} * NA_{output}$$

This tells us the maximum power that can be combined

Pump Combiners – Side Splicing

Pump Combiners – GT Wave

SPI

Pump Combiners – Tapered Bundles

Due to hexagonal close packing advantages – standard combiners have 7, 19 ports

Example combiners – 7 to 1 (105, 0.15 NA to 125, 0.45NA)

19 to 1 (105, 0.15NA to 200, 0.45NA)

Need for output power decides simultaneous choice of pump diodes and combiner

Pump Dump (Cladding power stripper)

Reverse pump combiner (with terminated ports)

Performance Estimation

Loss contributors

- Pump combiner 5% (0.95 transmission)
- Splice losses 1% per splice (~5 splices, 5%) (0.95 transmission)
- Light leakage behind the high reflector 3%
- Quantum limited efficiency (975/1064 ~ 91%)

Net efficiency – 0.95*0.95*0.97*0.91 = 79% (70-80% in practice)

Flowchart - Design

Build Procedure: Design

Laser diodes

- Laser diodes with similar wavelength drift properties
- Data on diode behavior measured (needed for gain fiber, pump dump stage)

Build Procedure: Design

Gain fiber

 Choose enough fiber for >15dB total absorption + margin to account for laser diode drift

 Pump dump has a power rating it can dissipate, gain fiber should always be long enough to overcome this.

Laser diodes and Gain fiber fix combiner

Fiber mirror

- At the wavelength of choice in the emission window
- High reflectivity grating (>99%) reflection, 1-3nm bandwidth
- Low reflectivity grating (<10%) reflection, 0.5-1nm bandwidth
 - Highly asymmetric cavities

Build Procedure: Design

Pump dump (cladding mode stripper)

 Maximum amount of unabsorbed pump can be estimated from

- Length of gain fiber
- Wavelength drift of diodes
- Total power

The pump dump should be testing to ensure its survivability at the maximum amount of dissipated power (for long enough durations)

Build Procedure: Optical Fiber Recoating

Measurement and Monitoring

Oscilloscope

Length optimization of Gain fiber in laser

Packaged Lasers

Packaged Units with Electronics, rugged enclosure

• Some package tests – Long burn-in (1000 hours), power cycling

More importantly – Need a good AC !

Lifetime estimations can be obtained from these tests

Fiber Fuse

