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Source Material

New review paper: V R Supradeepa, Yan Feng, Jeffrey W. Nicholson, “Raman
Fiber Lasers,” IOP Journal of Optics (2017). Please refer to the paper for exact
references to material shown in this lecture
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Abstract
High-power fiber lasers have seen tremendous development in the last decade, with output
powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as
the primary rare-earth-doped gain medium owing to its inherent material advantages. However,
for this reason, the lasers are largely confined to the narrow emission wavelength region of
ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large
number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber
lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can
span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers,
specifically focused on the most recent developments. We will also discuss several applications
of Raman fiber lasers in laser pumping, frequency conversion, optical communications and
biology.
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Technology
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From encyclopedia of laser physics and technology




Current Technology of High Power Fiber

Lasers
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Power availability: Limited primarily to Ytterbium doped lasers

Wide white-spaces: No laser technology available

Wide variety of technologies: Every wavelength needs a different laser

Raman laser — only scalable technology
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1.5micron band lasers
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High power 1.5micron lasers
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* Resonantly Cladding pumped Yb free Er doped fiber using 15xx pump diodes
* Expensive
» Long wavelength operation
* Reduced Beam quality

* Raman lasers offer a more efficient, cost-effective and scalable solution.



Technology of (Cascaded) Raman Fiber
Lasers
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Principle of Raman Lasers
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Conventional implementation of
Cascaded Raman Fiber Lasers
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Raman Laser with one wavelength shift
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Cascaded Raman laser (more than one
wavelength shift)
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« Raman conversion achieved with nested cavities spaced at the
Stokes shifts

» Salient Points —
* First Proposed in 1993 (1 W level), scaled to 40W in 2007

- Efficiency (best efficiencies achieved for a 5" order cascaded
system - ~30% (1117 to 1480, Quantum limited efficiency — ~75%)

« Further Scattering of Signal — Unstable at higher powers
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Systems and components of Raman
Lasers
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High Power Rare-earth doped fiber laser
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Raman Wavelength conversion
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Fiber Bragg gratings for wavelength conversion
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Raman Wavelength conversion
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Fiber Bragg gratings for wavelength conversion

Components for isolation of Raman cavity from rare-earth doped fiber laser —
* Long period gratings

« Tilted fiber Bragg gratings

« Wavelength division multiplexers
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Design of Raman Fiber Lasers
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Numerical Modeling of Raman Fiber Lasers
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Optimization of Resonator Components

Fiber Length

Grating reflectivities

Grating Bandwidths

Splice losses between various fibers
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